J. Simon

an derive the quantity
is approximately constant and h slowly, but this may be within
function of T / ϕ

$$
\begin{gathered}
\left(U-U_{0}\right) / T \\
0.010 \\
0.017 \\
0.043 \\
0.091 \\
0.158 \\
0.248 \\
0.359 \\
0.491 \\
0.645
\end{gathered}
$$

ntegrating the relationship
depends only on volume. The , V, T values on the melting in figure 9 , together with the is.
be extrapolated to $0^{\circ} \mathrm{K}$ with ationship at absolute zero can m this in turn the compressiund and is shown in table 5 . res may also be obtained.

helium at $0^{\circ} \mathrm{K}$

pressure (atm)	$10^{5} \beta$ $\left(\mathrm{~atm}^{-1}\right)$
295	54
200	76
136	103
88	140
50	190

Thermodynamic properties and melting of solid helium

Figure 9. The isochores of solid helium at eight molar volumes. ----, transition line in the solid.

Figure 10. The pressure-volume relation in solid helium at $0^{\circ} \mathrm{K}$.

